DP-100

Designing and Implementing a Data Science Solution on Azure

3 dagen
Intermediate
Available in English

Volg de DP-100 training Designing and Implementing a Data Science Solution on Azure. Leer hoe je machine learning-oplossingen op cloudschaal kunt gebruiken met Azure Machine Learning. In deze training leer je jouw bestaande kennis van Python en machine learning te gebruiken om gegevensopname en voorbereiding, modeltraining en -implementatie en monitoring van machine learning-oplossingen in Microsoft Azure te beheren.

Na afronding van deze training kun je onder andere:

Machine learning-oplossingen gebruiken met behulp van Azure Machine Learning
Jouw bestaande kennis van Python en machine learning gebruiken om data-opname en voorbereiding te beheren
Machine learning-oplossingen in Microsoft Azure beheren en beveiligen
Flexibel inplannen
Bij ons kun je flexibel inplannen. Zo train je wanneer het jou uitkomt. 
Hulp of advies nodig?
Laat je telefoonnummer achter, dan bellen we je binnen 30 minuten terug.
Hidden

Met het versturen van dit formulier ga je akkoord met onze Privacy Policy

This field is for validation purposes and should be left unchanged.
Beste lesmethode
Kleine klassen
Flexibel inplannen
Leer wat jij nodig hebt

Training: Designing and Implementing a Data Science Solution on Azure

Learn how to operate machine learning solutions at cloud scale using Azure Machine Learning. This DP-100 course teaches you to leverage your existing knowledge of Python and machine learning to manage data ingestion and preparation, model training and deployment, and machine learning solution monitoring in Microsoft Azure.

Successful Azure Data Scientists start this role with a fundamental knowledge of cloud computing concepts, and experience in general data science and machine learning tools and techniques.

Specifically:

  • Creating cloud resources in Microsoft Azure.
  • Using Python to explore and visualize data.
  • Training and validating machine learning models using common frameworks like Scikit-Learn, PyTorch, and TensorFlow.
  • Working with containers

This course is designed for data scientists with existing knowledge of Python and machine learning frameworks like Scikit-Learn, PyTorch, and Tensorflow, who want to build and operate machine learning solutions in the cloud.

Module 1: Getting Started with Azure Machine Learning

In this module, you will learn how to provision an Azure Machine Learning workspace and use it to manage machine learning assets such as data, compute, model training code, logged metrics, and trained models. You will learn how to use the web-based Azure Machine Learning studio interface as well as the Azure Machine Learning SDK and developer tools like Visual Studio Code and Jupyter Notebooks to work with the assets in your workspace.

Lessons

  • Introduction to Azure Machine Learning
  • Working with Azure Machine Learning

Lab : Create an Azure Machine Learning Workspace

After completing this module, you will be able to

  • Provision an Azure Machine Learning workspace
  • Use tools and code to work with Azure Machine Learning

Module 2: No-Code Machine Learning

This module introduces the Automated Machine Learning and Designer visual tools, which you can use to train, evaluate, and deploy machine learning models without writing any code.

Lessons

  • Automated Machine Learning
  • Azure Machine Learning Designer

Lab : Use Automated Machine LearningLab : Use Azure Machine Learning Designer

After completing this module, you will be able to

  • Use automated machine learning to train a machine learning model
  • Use Azure Machine Learning designer to train a model

Module 3: Running Experiments and Training Models

In this module, you will get started with experiments that encapsulate data processing and model training code, and use them to train machine learning models.

Lessons

  • Introduction to Experiments
  • Training and Registering Models

Lab : Run ExperimentsLab : Train Models

After completing this module, you will be able to

  • Run code-based experiments in an Azure Machine Learning workspace
  • Train and register machine learning models

Module 4: Working with Data

Data is a fundamental element in any machine learning workload, so in this module, you will learn how to create and manage datastores and datasets in an Azure Machine Learning workspace, and how to use them in model training experiments.

Lessons

  • Working with Datastores
  • Working with Datasets

Lab : Work with Data

After completing this module, you will be able to

  • Create and use datastores
  • Create and use datasets

Module 5: Working with Compute

One of the key benefits of the cloud is the ability to leverage compute resources on demand, and use them to scale machine learning processes to an extent that would be infeasible on your own hardware. In this module, you’ll learn how to manage experiment environments that ensure consistent runtime consistency for experiments, and how to create and use compute targets for experiment runs.

Lessons

  • Working with Environments
  • Working with Compute Targets

Lab : Work with Compute

After completing this module, you will be able to

  • Create and use environments
  • Create and use compute targets

Module 6: Orchestrating Operations with Pipelines

Now that you understand the basics of running workloads as experiments that leverage data assets and compute resources, it’s time to learn how to orchestrate these workloads as pipelines of connected steps. Pipelines are key to implementing an effective Machine Learning Operationalization (ML Ops) solution in Azure, so you’ll explore how to define and run them in this module.

Lessons

  • Introduction to Pipelines
  • Publishing and Running Pipelines

Lab : Create a Pipeline

After completing this module, you will be able to

  • Create pipelines to automate machine learning workflows
  • Publish and run pipeline services

Module 7: Deploying and Consuming Models

Models are designed to help decision making through predictions, so they’re only useful when deployed and available for an application to consume. In this module learn how to deploy models for real-time inferencing, and for batch inferencing.

Lessons

  • Real-time Inferencing
  • Batch Inferencing
  • Continuous Integration and Delivery

Lab : Create a Real-time Inferencing ServiceLab : Create a Batch Inferencing Service

After completing this module, you will be able to

  • Publish a model as a real-time inference service
  • Publish a model as a batch inference service
  • Describe techniques to implement continuous integration and delivery

Module 8: Training Optimal Models

By this stage of the course, you’ve learned the end-to-end process for training, deploying, and consuming machine learning models; but how do you ensure your model produces the best predictive outputs for your data? In this module, you’ll explore how you can use hyperparameter tuning and automated machine learning to take advantage of cloud-scale compute and find the best model for your data.

Lessons

  • Hyperparameter Tuning
  • Automated Machine Learning

Lab : Tune HyperparametersLab : Use Automated Machine Learning from the SDK

After completing this module, you will be able to

  • Optimize hyperparameters for model training
  • Use automated machine learning to find the optimal model for your data

Module 9: Responsible Machine Learning

Data scientists have a duty to ensure they analyze data and train machine learning models responsibly; respecting individual privacy, mitigating bias, and ensuring transparency. This module explores some considerations and techniques for applying responsible machine learning principles.

Lessons

  • Differential Privacy
  • Model Interpretability
  • Fairness

Lab : Explore Differential privacyLab : Interpret ModelsLab : Detect and Mitigate Unfairness

After completing this module, you will be able to

  • Apply differential privacy to data analysis
  • Use explainers to interpret machine learning models
  • Evaluate models for fairness

Module 10: Monitoring Models

After a model has been deployed, it’s important to understand how the model is being used in production, and to detect any degradation in its effectiveness due to data drift. This module describes techniques for monitoring models and their data.

Lessons

  • Monitoring Models with Application Insights
  • Monitoring Data Drift

Lab : Monitor a Model with Application InsightsLab : Monitor Data Drift

After completing this module, you will be able to

  • Use Application Insights to monitor a published model
  • Monitor data drift

Certificering

Deze training is onderdeel van een certificering, binnen het volgende traject:

Ontvang gave gadgets bij onze trainingen!

10
Jennifer Pereira
Ik heb hier de 2-daagse training Microsoft Dynamics 365 fundamentals gevolgd. Medewerkers zijn zeer hulpvaardig en denken ver mee, dit vond ik TOP! De Active Learning training met vakkundige trainster is me heel goed bevallen. De lunch was royaal en erg lekker! Kortom, wellicht tot ziens!
9,0
Willem de Lang
In Februari een 5-daagse training WS-11 (Server 2019) gevolgd in twee weken. Deze training was op basis van het Active Learning programma en dit is me zeer goed bevallen. De instructeur had voldoende tijd/kennis om vragen te beantwoorden en me verder te helpen wanneer ik vast liep.
9,5
Edwin Kruize
Bij Master IT train ik al jaren on-site in Eindhoven wat mij ontzettend goed bevalt. De Active Learning lesmethode is perfect voor mij en kan ik op mijn eigen tempo en onder goede begeleiding mijn studies volgen. De trainers hebben veel brede kennis en nemen de tijd voor je. 

Active Learning

Je maakt samen met je trainer een plan en gaat actief aan de slag. In een kleine klas verdiepen in wat je echt nodig hebt, inzoomen op zaken die je echt interesseren en overslaan wat je al weet of niet nodig hebt. Plan je lesdagen flexibel, neem real-life casussen mee en werk ze uit met je trainer. Verrijk je kennis en verbind het met alles wat je al wist.

Digital MOC
Labomgeving
3 dagen voor € 1.490,-

E-Learning

Ben je op zoek naar volledige zelfstudie? Wij bieden je de mogelijkheid om jouw training volledig in jouw eigen tijd te volgen. Uiteraard met het officiële lesmateriaal waarmee je de juiste kennis opdoet.

Digitaal MOC
Labomgeving
MCT Mentoring
€ 690,-

Blended Learning

Een mix van lesmethodes! Het combineert E-learning met een dag in onze Active Learning classroom. Zo krijg je flexibiliteit om te studeren waar en wanneer je maar wilt mét waardevolle 1-op-1 tijd met een gecertificeerde trainer.

Microsoft Examenvoucher - Tijdelijke actie!
Digitaal MOC
Labomgeving
MCT Mentoring
Oefenexamen omgeving
1 dag voor € 1.350,-

Incompany

Wist jij dat alle IT trainingen die we aanbieden op de website ook bij jouw bedrijf uitgevoerd kunnen worden? Zo volg je een maatwerk IT training (Incompany training) met al je collega’s. Jij kunt de training nog specifieker voor jouw bedrijf laten inrichten en het is zelfs mogelijk om een geheel maatwerk traject door ons te laten ontwerpen.

Je bespaart reiskosten en reistijd voor de deelnemers, doordat onze trainer bij jou op locatie komt. Op deze manier kun je meerdere deelnemers van jouw organisatie dezelfde training laten volgen. Dat is efficiënt en effectief! Samen heb je een gemeenschappelijke opleidingsbehoefte en daar gaan we je bij helpen.

We hebben jarenlang ervaring in het geven van maatwerk it trainingen. We kijken zorgvuldig naar de opleidingsbehoefte om volledig aan te sluiten bij je wensen. Zo formuleren we haalbare en concrete doelstellingen en deelnemers kunnen het geleerde in de praktijk toepassen. Op deze manier groeien deelnemers persoonlijk en professioneel op meerdere niveaus.

Maatwerktraining
Van A-Z geregeld voor jouw team
Trainer komt op locatie

Digitale brochure ontvangen?

  • Hidden
  • Hidden
  • Met het versturen van dit formulier ga je akkoord met onze Privacy Policy

  • This field is for validation purposes and should be left unchanged.
DP-100
Designing and Implementing a Data Science Solution on Azure
€ 1.490,-
Bekijk data